中子技術 輪廓法 數值模擬

【深度科普(5/8)】中子散射技術的應用—自然世界

發布時間:2017-04-28

    

    我們的世界和宇宙不斷地令人著迷、好奇和感到驚喜。我們可以向植物和動物學習許多解決常見問題的辦法,并且可以通過研究行星的地質及其自然發展過程,來加深對地球在宇宙中所處位置的認識。利用中子散射技術,能為農作物育種和醫藥提供新思路,并為行星科學研究帶來全新的視角。

    Our world and universe continue to fascinate, intrigue and surprise. We can learn many lessons from plants and animals on how to solve common problems and gain deeper understanding of our place in the universe by studying the geology and natural processes of the planets. Neutron scattering is being used to offer new potential for crop breeding and medicines, and to bring new insights to planetary science.


一、紡織紗線 Spinning Yarns



    蜘蛛絲的強度是鋼的5倍,所能吸收的能量是防彈衣材料的3倍以上。蜘蛛是用以膠滯體形式儲存在他們體內特殊絲腺中的水和蛋白質混合物來紡絲的。隨著這種膠滯體被從蜘蛛的絲腺中拉出,它就變成了非常具有彈性的絲線,這種絲線在廣大的工業領域中可能會有許多潛在的用途。如果我們能制造出人造絲,我們就可以利用其強度和彈性,開發新型塑料和生物植入材料。

    Spider-silk is five times as strong as steel and absorbs three times more energy than the material used in bullet-proof vests. Spiders spin silk from a mix of water and proteins stored as a gel in specialized silk glands inside their bodies. As the gel is pulled through their spinning glands it becomes a very resilient solid that could have many potential uses in the industrial world. The strength and elasticity of silk could be harnessed for new plastics and biomedical implants if it could be made artificially.


    中子散射技術在研究人造絲方面發揮著重大作用。利用為研究生物材料所調試的中子束,科研團隊正在研究蜘蛛體內的膠滯體在轉變成蜘蛛絲時,原子層面上結構的改變。所做的實驗已經解答了一些疑惑,并將繼續揭示更多的自然界中的奧秘。

   Neutron scattering is playing a key role in discovering how silk can be made artificially. Research teams are using neutron beams tuned for studying biological materials to shine a light on the atomic scale structural changes as the gel transforms into solid fibre. Experiments have unlocked some answers, and continue to reveal more of nature’s secrets.



    我們一直在探尋自然界是如何創造出如此神奇的物質的。中子散射恰恰是能夠幫助我們了解蜘蛛這一魔幻技能的完美技術。

—— Chris Holland博士

牛津大學真絲研究組

    We are asking how nature makes such amazing materials. Neutron scarttering is an excellent technique for understanding the spider's magic tricks.

—— Dr. Chris Holland

Oxford University Silk Group


二、零度以下的生存 Sub-zero survival




    蜥蜴作為冷血動物,對自身體溫的調節能力非常有限。它們的體溫伴隨著冬天氣溫的下降而下降,因此身體組織和細胞就可能遭受由于體內結冰而帶來的不可修復的損傷。為防止細胞內部和細胞之間致命冰晶的形成,蜥蜴調動像丙三醇(甘油)那樣的化合物來降低水分結冰的溫度。在持續的零下溫度環境里,細胞活動就會暫時停止,直至溫度再次回升,正常的細胞活動就能安全地恢復。

    Cold-blooded lizards have only limited ability to regulate their own body temperature. When temperatures fall in winter, so does their body temperature, putting tissues and cells at risk of irreparable damage from internal ice. To prevent lethal ice crystals forming in and between cells in their body, lizards use chemical compounds such as glycerol to reduce the freezing temperature of water. During prolonged exposure to sub-zero temperatures, cell activity is paused until temperatures rise again and normal activity can safely resume.

 

    中子散射實驗所采集的分子結構信息,向我們展示了將丙三醇與水混合后,它是如何防止堅硬冰網形成的。這個對于丙三醇作用的一個新的基本了解,將有許多應用價值。對蜥蜴如何在低溫環境下生存的一個新的認識,會有助于發展食物儲藏、生育治療和藥物運輸等技術。

    Molecular structure data collected with neutron scattering shows how mixing glycerol with water prevents rigid ice networks from forming. This new fundamental understanding of the role of glycerol will be helpful in a range of applications. Food storage, fertility treatment and transporting medicines could benefit from a new understanding of how lizards survive at low temperatures.



    提高對蜥蜴低溫環境下生存的基本認知,可能有助于我們提高在生育治療中的組織存儲和恢復、制藥行業中的藥品儲存、手術所需的器官運輸以及農業食物儲藏等方面的技術水平。

—— Lorna Dougan博士

利茲大學

    Improving our fundamental knowledge of lizard cryopreservation may lead to improved storage and recovery of tissue for fertility treatment, better storage of drugs in the pharmaceutical industry and transport of organs for surgery, and better storage of food in the agricultural industry.

—— Dr. Lorna Dougan

Universityof Leeds


、抗病害作物 Disease resistant crops




    鑒于糧食的產量受到氣候變化、蟲害、病害和人口增長等問題的挑戰,英國乃至全世界都在十分關注食品安全問題。由于病蟲害,全世界每年損失1/4的農作物。因此,習得植物的自我防御手段或許是減少糧食損失的一種有效方式。諸如黑麥、大麥、燕麥和小麥等常見作物,能夠自生抗菌蛋白,用來抵御病害、霉菌和細菌。小麥的防御蛋白還有另外一個作用:它能提供決定小麥加工特性的胚乳組織,具有重大經濟價值。

    Food security is becoming a major concern in the UK and across the world, as harvest yields are challenged by climate change, pests, diseases and the demands of arising world population. A quarter of the world’s crops are lost to pests and disease. Understanding how plants defend themselves could be one way to reduce losses. Common crops like rye, barley, oats, and wheat make antimicrobial proteins to defend themselves against disease, fungi and bacteria. In wheat, the defence proteins play an additional role in giving the endosperm texture, an economically important quality that determines the milling characteristics of the wheat.

 

    食品科學家們利用中子散射技術研究防御蛋白的分子運動,及其與入侵物細胞膜間的相互作用。他們能夠直接觀察防御蛋白是如何穿透細胞膜,進而殺死入侵細菌,或者剝落入侵細菌表面的致命成分。

    Food scientists are using neutron scattering to learn about the molecular action of defence proteins and their interaction with the cell membranes of invaders. They can watch defence proteins punch their way through a cell membrane to kill hostile bacteria or strip vital components from its surface.


    抗菌作物的防御蛋白有助于提高各類轉基因作物的抗病能力和糧食產量。隨著區域性氣候的變化,這個認知也能夠幫助農民和育種人員調整作物,以應對氣候模式的轉變。

    Anti-microbial plant defence proteins could be used in transgenic crop species to increase disease resistance and food yield. As regional climates change, this knowledge will also help farmers and breeders to adapt plants to counteract shifting weather patterns.



、行星科學 Planetary science


    

    人造衛星對巨型氣態行星木星和土星的多次探測顯示,我們的太陽系擁有多種多樣的天體,各自都有著復雜多樣的演變歷史。因此,揭示行星和衛星的演變過程是地球和行星科學的主要挑戰之一。

    Satellite missions to the giant gas planets Jupiter and Saturn have revealed that our Solar System displays a rich variety of bodies, each with a complex and diverse evolutionary history. Therefore, understanding the evolution of the planets and moons presents one of the major challenges in Earth and planetary sciences.

 

    地質學家們開發了新穎的高壓中子散射實驗,用于模擬地球內部環境或者預測太陽系中冰冷衛星的地質情況。英國和法國大學的課題組,為中子散射儀器,聯合研發了能夠通過擠壓對巖石和其他材料施加極高壓力的特殊設備。這樣的高壓能夠再現Titan(土衛六,土星最大的衛星)內部的環境,或者地球700km深處地幔中的情形。通過中子散射實驗所得到的精確數據,能夠讓行星科學家們更好地解讀從航天器上拍攝到的地表圖像所呈現的地質情況,或為地球上所記錄下來的地震數據提供無懈可擊的解釋。

    Geologists have developed novel high-pressure neutron scattering experiments to model the Earth’s interior or predict the geology of the icy moons of the Solar System. Unique equipment developed by university groups in the UK and France for neutron scattering instruments can squeeze rocks and other materials to very high pressures. These high pressures reproduce the conditions found inside Titan, Saturn’s largest moon, or inside the mantle of the Earth at depths of up to 700km. The precise data derived from neutron scattering experiments allows planetary scientists to better interpret the geology seen in surface images taken from spacecraft, or create robust interpretations of seismic data recorded on Earth.




copyright ? 2016 東莞材料基因高等理工研究院 .All Rights Reserved.     粵ICP備16087785號-1
宁夏11选5_首页|欢迎您